, Osserman and Ivanov - Petrova Pseudo - Riemannian Manifolds
نویسنده
چکیده
We exhibit pseudo Riemannian manifolds which are Szabó nilpotent of arbitrary order, or which are Osserman nilpotent of arbitrary order, or which are Ivanov-Petrova nilpotent of order 3.
منابع مشابه
Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS
We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.
متن کاملNilpotent Spacelike Jorden Osserman Pseudo-riemannian Manifolds
Pseudo-Riemannian manifolds of balanced signature which are both spacelike and timelike Jordan Osserman nilpotent of order 2 and of order 3 have been constructed previously. In this short note, we shall construct pseudo-Riemannian manifolds of signature (2s, s) for any s ≥ 2 which are spacelike Jordan Osserman nilpotent of order 3 but which are not timelike Jordan Osserman. Our example and tech...
متن کاملHigher Order Jordan Osserman Pseudo-riemannian Manifolds
We study the higher order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and nontrivial examples of higher order Osserman manifolds. Subject Classification: 53B20. PACS numbers: 0240, 0...
متن کاملSzabó Osserman Ip Pseudo-riemannian Manifolds
We construct a family of pseudo-Riemannian manifolds so that the skew-symmetric curvature operator, the Jacobi operator, and the Szabó operator have constant eigenvalues on their domains of definition. This provides new and non-trivial examples of Osserman, Szabó, and IP manifolds. We also study when the associated Jordan normal form of these operators is constant. Subject Classification: 53B20.
متن کامل